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A note on a swimming problem 

By E. 0. TUCK 
California Institute of Technology, Pasadena, California t 

(Received 19 May 1967) 

The rate of self-propulsion of a doubly-infinite flexible sheet due to transverse 
waving oscillations in a viscous fluid is shown to decrease with increasing fre- 
quency, at a fixed (small) wave amplitude. This result differs from that of Rey- 
nolds (1965) who included local inertia, and thereby predicted that the swimming 
speed increases above the limiting value given by Taylor (1951) at zero frequency. 
The error in Reynolds’ work is due to his neglect of the simultaneous effect of 
convection, which induces a non-uniform mean second-order flow, with direction 
such as to oppose propulsion. Some other results concerning swimming sheets 
are presented. 

1. Introduction 
In  order to investigate the mechanism of swimming of micro-organisms, Taylor 

(1951) took as his fkst model a doubly infinite sheet, flexible but inextensible, 
which is propelling itself by small transverse oscillations. Taylor considered 
a wave of displacement y = b sin (kx - at) propagating in the + x direction with 
phase velocity c = cr/k, and found that this motion induces a velocity in the 
fluid at infinity of 

also in the + x direction. A limitation of Taylor’s analysis is that the Reynolds 
number R = cr/vk2 based on the phase velocity of the wave must be small enough 
for the application of the Stokes equations for steady flow. This limitation was 
removed by Reynolds (1965), who derived, in effect, a multiplicative correction 
factor F ( R ) ,  such that 

In  fact, the formula given by Reynolds can be simplified considerably, and re- 

U, = c[$(kb)2+O(kb)4] ,  (1.1) 

U, = c[$(kb)2 F ( R )  + O ( l ~ b ) ~ ] .  (1.2) 

duces to 

a function which increases monotonically from unity at R = 0, tending to infinity 
like Rt as R --f 00. Thus the effect of inertia appears to be to increase the propul- 
sion velocity above that found by Taylor at R = 0. 

It is the purpose of the present note to observe that Reynolds’ formula (1.2) 
is incorrect, and that the correct result is 

t Present address : University of Adelaide, South Australia. 
20 Fluid Mech. 31 



306 E. 0. Tuck 

with the same value (1.3) for F(R) .  The new expression (1.4) for the velocity of 
propulsion is in sharp contrast with the previous result (1.2), for now the pro- 
pulsion velocity decreases as R increases, tending to one-half of Taylor’s value as 
R -+ 00. The discrepancy between (1.2) and (1.4) arises from the fact that in 
obtaining (1.2) no account was taken of (second-order) convection terms in the 
Navier-Stokes equation, which tend to hamper propulsion, whereas the first- 
order inertia terms (involving a/at or c(a/ax)) enhance propulsion. Reynolds 
(1965, p. 344) anticipates that the mean second-order flow is purely uniform, i.e. 
independent of x and y. In  fact the convection terms (written out as the Jacobian 
on the right of his inhomogeneous Oseen equation (8), but not used in his sub- 
sequent analysis) induce a contribution to the mean second-order flow which is 
independent of x: but an exponentially decaying function of distance y from the 
plate. The analysis in Reynolds’ section 3, concerning a standing wave motion, 
is also in error because of neglect of the convection terms. 

2. Analysis 
Although we could use the same notation and formulation as Reynolds, an 

abbreviated alternative derivation is presented here as a matter of interest. 
We use a stream function $ satisfying u = $v, v = - $%, w = - Vz$, and the 
Navier-Stokes equation 

The boundary conditions (Taylor 1951) are 

u = a b 2 k g c o s ( 2 k x - 2 ~ t ) + O ( b 4 ) ,  

v = - gb cos (kx- vt) + O(b3), 

on the moving surface 
We now make the expansion 

y = bsin(kx-d). 

$ = 9[$l(y) e-ikx+iut ] +Y,(y) +B?[$2(y) e--2ikx+2iut 1 + 0 ( b 3 ) ,  (2.3) 

where the first term of (2.3) is O(b)  and satisfies a linearized version of the Navier- 
Stokes equation (2. l ) ,  while the remaining second-order terms are divided 
into a ‘D.C.’ part YP,(y) = O(b2) independent of t  and x, and a second-harmonic 
part which varies sinusoidally in t and x, and with which we shall not be concerned. 

The solution for the linearized flow is obtained by inspection, with the result 

where Z = {k2+ ( i ( ~ / v ) } J  ( = k,8ei$ in Reynolds’ notation). Although the notation 
differs substantially, equation (2.4) agrees with Reynolds’ equation ( 12). 

The equation satisfied by the D.C. second approximation is 
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where ( ) denotes an average with respect to t or x, and ul, vl, w1 are first-order 
quantities. The right-hand side of (2 .5)  may be evaluated using the above 
formula (2 .4)  for q91, with the result 

where a = E + 6, y = 1 + i = 299(1). The solution for Yz which corresponds to a 
velocity U, at y = co is 

Yz = Umy+iab21a129 (2 .7)  

The boundary condition to be satisfied on y = 0 is obtained by substitution of 
the expansion (2.3) into the boundary conditions (2.2), resulting in 

which is consistent with the above solution for Y, only if 

This expression reduces to equation (1 .4)  after some manipulation, with the 
identification 

Y 
2E 

F ( R )  = - 

= 99( 1 + iR)k 
If we neglect the second term of (2.9), we are left with equation ( l . Z ) ,  which can, 
also after some manipulation, be shown to be equivalent to Reynolds’ result. 

3. Further comments 
Although the unrealistic geometry of the oscillating doubly infinite sheet 

makes its application as a model for swimming organisms questionable, it  may 
be worthwhile to quote some further results which can easily be expressed in the 
present notation. Other extensions were discussed by Reynolds (1965) .  

First, we may observe that Taylor’s inextensibility condition is not strictly 
necessary in the present problem. Thus we made no use of the second-harmonic 
term in the boundary condition (2 .2)  for u. The present results are in fact valid 
for any predominantly transverse waving oscillation of a flexible sheet, such that 
a particle of the sheet lies at position (x, y) at time t ,  where 

X = xo+O(b), ( x - x ~ )  = O(b2), 
y = b sin (kx, - at) + o(b2). 

Here x, is a label co-ordinate of the particle, in the Lagrangian sense. Notice 
that the shape of the sheet need not be exactly sinusoidal in space or time, so 
that we cannot reduce the problem exactly to a steady flow. 
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By the same token we could consider wave motions which are predominantly 
longitudinal, involving the creation of an effective velocity of slip over the sheet. 
Thus if x = x, + b sin (kx, - d) + o(b2),  (3.3) 

Y = o(b2), (3.4) 

then the resulting velocity of propulsion is found by a very similar analysis to  be 

Notice that the fluid at infinity is induced to move in a direction opposite to 
that of the wave, at  a rate which increases with R.  Reynolds (1965) considered 
cases intermediate between transverse and longitudinal, for R = 0 only. Since 
we have seen that these two modes propel the sheet in opposite directions when 
acting separately, the magnitude and direction of propulsion when they act 
together must depend critically on the relative phase between the two modes. 

Finally, we may calculate the rate of dissipation of energy in the fluid, as a 
generalization to finite R of Taylor’s (1951) estimate at  R = 0. If (2) denotes 
the time-averaged rate of dissipation per unit area of the plate in the whole 
fluid, then to leading order in b 

( E )  = pa2b2k[ 1 + fr’(R)] (3.6) 

for both transverse and longitudinal oscillations. This reduces to Taylor’s result 
2pa2b2k at R = 0, and increases with R. In assessing efficiency of propulsion it is 
obviously more significant to consider U, at fixed (2) rather than fixed ampli- 
tude b, in which case we see that the propulsive velocity decreases rapidly with 
R for transverse oscillations. Even the longitudinal oscillation mode gives a slow 
decrease in efficiency as R increases, by this criterion. 

This work has been carried out under the support of the Office of Naval Re- 
search, Contract Nonr 220 ( 3 5 ) .  
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